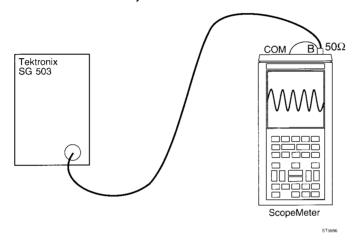
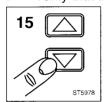
14/15/16/17. Trigger sensitivity channel A and B

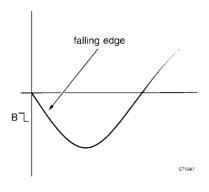

The trigger sensitivity depends on the amplitude and frequency of the trigger signal. This test checks the trigger sensitivity of the ScopeMeter. Also the +SLOPE/-SLOPE function (triggering on negative slope) is tested for both channels A and B. Channel B is tested first.

Test equipment:

Tektronix SG 503 Constant Amplitude Sine Wave Generator


Test setup:

Connect the banana jack COM to the BNC common



Procedure/requirements for channel B trigger sensitivity measurement:

- A Apply a 100 MHz sine wave, with an amplitude of approximately 200 mV peak-to-peak to channel B. Use a 50Ω termination.¹⁾
- B Adjust the amplitude of the input signal to exactly 4 divisions on the display.
- C Verify that the signal is well triggered.
- D Apply a 60 MHz sine wave, with an amplitude of approximately 100 mV peak-to-peak to channel B. Use a 50Ω termination.¹⁾
- E Adjust the amplitude of the input signal to exactly 2 divisions on the display.
- F Verify that the signal is well triggered.

- G Apply a 10 MHz sine wave, with an amplitude of 300 mV peak-to-peak to channel B. Use a 50Ω termination.¹⁾
- H Adjust the amplitude of the input signal to exactly 1.5 divisions on the display.
- Verify that the signal is well triggered on the **falling** edge. See figure 4.5.

1) The SG 503 setting will be higher than the required ScopeMeter input value!

Figure 4.5 Signal triggered on the falling (negative) edge